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Abstract-The pulsation frequency of horizontally situated semi-infnite reacting surfaces is studied using 
linear stability theory. The analysis considers the flow to consist of an initially laminar base flow and a 
periodic disturbance. The governing equations are cast into a self-similar form analogous to previous 
analyses of boundary layers. The base flow is analyzed in terms of a flame sheet approximation, the solution 
to which is required to solve the disturbed flow. Some boundary conditions pertaining to the disturbances 
are evident but some others are inferred herein. The governing equations are solved for a flame burning 
n-heptane, and the results of the analysis relate the disturbance frequency of the flame to a Grashof type 
number which, in turn, is related to the length of the thermal boundary layer. It is determined that the 

frequency scales according to a power law expressed as (length)-’ ‘. 

INTRODUCTION 

I T  HAS BEEN extensively observed that buoyant fires 
form large scale structures which are shed at a charac- 
teristic frequency (cf. [l-5]). Several attempts have 
been made to relate this pulsation frequency to the 
fire dimensions and characteristics, such as a charac- 
teristic diameter and heat release [I, 3, 51, Schon- 
bucher et al. [3] conduct a holographic interferometric 
study of organized structures in a buoyant fire and 
determine one monoperiodic process associated with 
phenomena occurring close to the fire surface. Their 
study reveals a thermal boundary layer that includes 
within it axial and radial parcels of cold fuel or 
entrained air. It has been hypothesized that ring vor- 
tices, formed around the fire neck, pull up the outer 
edge of the fire to form an initial instability [5]. In the 
only theoretical work on the issue to date, Bejan [6] 
examines the problem basing his analysis on the buck- 
ling theory of inviscid streams [7]. Experimental stud- 
ies on the flame spread of fires over horizontally 
stationed surfaces reveal that burning initially occurs 
in a ‘boundary layer mode’, and later in a ‘plume 
mode’ [8]. This implies the existence of length scales, 
smaller than a critical value, at which horizontally 
established buoyant flames will burn in a boundary 
layer mode. Therefore, the monoperiodicity that is to 
be found in fires formed over horizontally stationed 
surfaces may partially be due to instabilities in the 
thermal boundary layer, such a layer being similar 
to one surrounding the lower region of fires. The 
instabilities that are formed as a result may propagate 
downstream in a periodic fashion gaining in ampli- 
tude as heat is released. The present approach is simi- 
lar to ones followed previously in order to analyze the 

flickering of an infinite candle [9], or that of wind- 
aided flame spread across a ceiling [IO]. The method 
of analysis followed herein investigates how a given 
frequency interacts with the flow in order to determine 
a characteristic frequency corresponding to specific 
local flow conditions (cf. [I l-l 31). 

In this study we address an idealized problem per- 
taining to the stability of a buoyant boundary layer 
existing in a steady flow. Such a boundary layer could 
be reasonably expected to exist along some space 
curve anchored at the outer edge of a buoyant fire. 
We recognize that such a layer would separate at some 
distance from the fire edge to become the outer sheath 
of a buoyant plume. Therefore, the study of the pul- 
sation frequency of an actual fire must be coupled 
with an unsteady outer flow, which is outside the 
scope of a stability analysis such as the one presented 
herein. Having stated that, there is considerable merit 
in studying the idealized reacting flow problem that is 
contained herein. That merit lies in recognizing the 
role of fundamental boundary layer instabilities in 
reacting flows, the nonreacting counterparts of which 

have been extensively studied (cf. [7]). Though this 
problem is inapplicable to a fire in its entirety, it does, 
nevertheless, apply to disturbances along, and in the 
direction of the flame. The mathematical implication 
is that a parabolic flowfield is considered, rather than 
a set of elliptic governing equations. 

The stability of thermal boundary layers has been 
extensively studied by Gebhart and co-workers, a 
review of which is to be found in Gebhart ef al. [I I]. 
These studies have successfully predicted the stability 
regions for horizontal and vertical natural convection 
flows in agreement with measurements. Our essential 
methodology follows their work, but, whereas they 
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NOMENCLATURE 

quantity appearing in equation (8), 
(g/SvS) liS 
constant, from equation (20) 
stoichiometric coefficient associated with 
fuel 
stoichiometric coefficient associated with 
oxidizer 
stoichiometric coefficient associated with 
products 
frequency factor associated with the 
Arrhenius type expression of 
equation (7) 
specific heat at constant pressure, 
assumed constant, dimensional 
Damkahler number 
modified Damkiihler number 
surface diameter 
dimensional frequency 
dimensionless stream function 
modified Grashof type number, defined 
in equation (13) 
Grashof type number of the form 
Gr, = (gx’/vi) 

gravitational acceleration, dimensional 
thermal conductivity, assumed constant, 
dimensional 
molecular weight of the fuel 
instantaneous pressure, dimensional 
pressure difference between the surface 
and the ambient, dimensional 
fluctuating pressure difference, 
dimensional 
Prandtl number 
heat release due to stoichiometric 
combustion of the fuel, dimensional 
latent heat of vaporization of the 
evaporating fuel, dimensional 
disturbance temperature, dimensionless 
dimensional temperature prior to 
equation (7), dimensionless following 
equation (7) 
fluctuating temperature, dimensional 
activation energy associated with the 
Arrhenius ,type expression of equation 
(7). dimensional prior to that equation, 
and dimensionless following it 
characteristic velocity, dimensional 
instantaneous x-wise velocity, 
dimensional 
velocity component in the x-wise 
direction, dimensional 
fluctuating velocity component in the 
x-wise direction, dimensional 

V velocity component in the y-wise 
direction, dimensional 

I’, fluctuating velocity component in the 
y-wise direction, dimensional 

Wiihi instantaneous contribution of the ith 
species to the overall reaction rate, 
dimensional 

X 

YF 
yo 

1’ 

horizontal direction, perpendicular to the 
gravitational vector, dimensional 
mass fractions of fuel 
mass fractions of oxidizer 
vertical direction, aligned with the 
gravitational vector, dimensional. 

Greek symbols 

; 
complex wave number, dimensionless 
volumetric coefficient of thermal 
expansion 

s boundary layer thickness, dimensional 
I- instantaneous quantity 
Y ‘mean’ quantity 
Y’ ‘fluctuating’ quantity 
0 instantaneous temperature, dimensional 

prior to equation (7), and 
dimensionless following it 

0 the ratio T/T, 

1 J-1 
1 disturbance wavelength, dimensional 
P dynamic viscosity, dimensional 
V kinematic viscosity, dimensional 
l-I(q) dimensionless pressure 
P instantaneous density, dimensional 
P density, dimensional 
(Zoihi) heat release due to the chemical 

reaction, dimensional 
(Cc&)’ fluctuating heat release, dimensional 
@ disturbance stream function, 

dimensionless 
@I integral, see equation (20) 
@I integral, see equation (20) 
% integral, see equation (20) 
* dimensional stream function 
0 dimensionless frequency 
wi reaction rate associated with the 

production or destruction of the ith 
spe’cies, dimensional. 

Subscripts 
e ambient conditions 
e conditions at the flame 
i signifying imaginary 
r signifying real 
W conditions at the horizontal surface. 
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did not consider the effect of chemical reaction, we 
do so by invoking the flame sheet approximation as 
described below. The purpose of this study is to ident- 
i fy the characteristic frequency associated with the 
instability of a laminar thermal boundary layer occur- 
ring over a horizontal evaporating surface involving 
chemical reaction, such as in an idealized buoyant fire. 
The horizontal surface is considered to be semi-infinite 
in extent, in accord with previously asserted assump- 
tions involving buoyant flows [I I]. 

THEORETICAL ANALYSIS 

The flow configuration that is considered is sche- 
matically described in Fig. I. An evaporating surface, 
hereafter referred to as the surface, is stationed hori- 
zontally, perpendicular to the gravitational vector. 
The surface temperature of the surface is at the fluid 
boiling point temperature T,, the ambient tem- 
perature being denoted by the symbol T,. Between the 
surface and the boundary layer edge lies a flame with 
a temperature Tr. The analytical methodology follows 
that of earlier studies [9, I I-131, to which the reader 
is referred for an extended description. 

First, the boundary layer equations governing the 
flow are considered [I 1, 141, namely 

!g+f?!Yo 
ay 

au au ah ap 
Pu~+P~'ay=Qjz-~ 

aT aT k d2T 
Pyg+Pyjj=c,dyl 

Y 

- cw,/z,. (1) i 

In equation (I) the Boussinesq approximation 
is invoked. We note that transformations of the 
Howarth-Dorodnitsyn type are available for the pur- 
pose of analysing Rows with large density variations. 
In the present study such a transformation is used in 
order to obtain the ‘base’ solution pertaining to a 
flame sheet, as described below, following previous 
work [9, 14, 151. However, the perturbed flow, also 
discussed below, is approximated as one in which 
the Boussinesq approximation is applicable. Such an 
assumption is appropriate for a first study ; our later 
work will compare the results presented here with 
those obtained with a more complex analysis. In the 
third of the equations (I) viscous terms and all 
streamwise diffusion are neglected, an assumption in 
accord with previously conducted investigations of 
nonreacting flows [I I]. 

The boundary conditions are of the form 

u(s, 0) = 0. po(x, 0) = (po)w, u(s, co) = 0, 

p(s, co) = 0, (Pc,v).~(.~~0) = q(Pv)w, 
.’ 

T(x, co) = T,, T(x,O) = T,. (2) 

In the above equations, the product (pp) is assumed 
constant, the Prandtl number is set to unity, and the 
Boussinesq approximation is invoked. 

The instability in the boundary layer is analyzed in 
terms of a mean and a disturbance so that a quantity 
I- is represented by 

l-(x, y, T) = y(x, y) +y’(s, y, T) (3) 

the prime denoting the disturbance. In the context 
of equation (3) the quantities U, 0, p, p, and T that 
appear in equations (I) and (2) are represented by y. 

Transition to 
turbulence 

cc_--- 

Horizontally stationed burning surface Tw 
FIG. 1. Schematic diagram of a flame established over a semi-infinite horizontal surface 

-- 
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Equations (I) and (2) may be thought of as being since, as will be explained, the solution depends on 
characteristic of a base flow. The full equations involv- the integration of the associated flame sheet problem. 
ing the corresponding quantities T, i.e. U, k’, p, P, 0 A dimensionless similarity variable may be defined as 
and Wihi, are [I I] [I I, 141 

Next, the expressions obtained by substituting 
equation (3) into equation (4) are simplified by mak- 
ing the following approximations [I I] : (I) the base 
flow is that represented by boundary layer theory 
(equations (I) and (2)) ; (2) terms of second-order, or 
higher, are discarded; (3) the parallel flow approxi- 
mation is invoked, which implies that the mean com- 
ponent of D and the s-wise derivatives of the mean 
components of u and T are negligible; and (4) the 
amplification of the disturbance and its wavelength 
depend on the y-coordinate alone. As a result, the 
following equations are obtained : 

where u’, L”, p’. t and (Cc&)’ represent the fluctuating 
quantities 7’. A one-step chemical reaction is taken 
to be representative of the oxidation of fuel into 
products, i.e. 

a; fuel + a& oxidizer + a: products. (6) 

The chemical reaction rate is characterized by the 
relationship expressed below, namely 

BLIP2 
lvi = M- YF Y. exp (- TJT). 

F 
(7) 

The solution for the mass fractions is to be determined 
by solving the associated species equation (cf. [ 141). 

Next, the temperature is made dimensionless by 
multiplying the energy equations in equations (I), (4) 
and (5) with the quantity c,/Q. The original symbols 
for the temperature 0 = T+ T’ are retained for the 
dimensionless quantity itself; correspondingly, the 
activation energy is also made dimensionless and the 
symbol T, retained. A self similar solution is sought for 
the governing equations, similarity being applicable 

along with a stream function that satisfies the con- 
tinuity equation where the quantity A = (g/51~~)“‘. 
Making the assumption that 

i,b = 5v,,A.~~‘~f(~/), 

p(x, v) = 5p,~~A~.u”~Il(~), T = T(q) (9) 

and proceeding in the usual manner (cf. [I 1, l4]), the 
following equations may be obtained that describe the 
base flow 

.f”‘+3ff”-(f’)?- g ;(l-I-rl~) = 0 
e 

l-I’= T/7’,-] 

T”+3A fT’= -DY,Y,exp(-TJT) 

~+a, f’=O, T=T,, n=O 

il=O f’=O, T=T,, T:, = -qfw (10) 

the primes denoting differentiation with respect to q. 
The Damkohler number is expressed by the following 
relation, i.e. 

(11) 

Equations (IO) are solved by considering the related 
flame sheet problem [14-171; the solution of this 
specific problem is found in Puri [I47 for three 
different fuels, i.e. n-heptane, toluene, and methanol. 
Obviously, in the flame sheet problem, the effects of 
finite rate kinetics are not considered, similar to an 
approach used before for a combustion boundary 
layer [9]. 

The equations characterizing the fluctuations, i.e. 
equations (5), are considered and the solution method 
closely follows earlier analyses [9, 11, 131. The dis- 
turbance stream function and the temperature are 
described in terms of the dimensionless complex func- 
tion 0 and s (that, as noted above, are assumed to be 
independent of the x-wise coordinate) by the fol- 
lowing equations, i.e. 

+V(x, y. 7) = 6U*@(q) exp [i(oSx-Gwr)] 

t(x, y, T) = s(q) exp [ilk - ck)l (1.9 
where 

136 2aF6 
o=-= u+ u+=wr. 
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Substitution of equations (12) and (I 3) into equa- 
tions (5) yields the characteristic Orr-Sommerfield- 
type equations [I I, 131 for the fluctuating quantities, 
namely 

(f’-w/a)(W- (cd)*@) -“pa 

W”‘-2(a0)2W’+(aO)4Q, s 
= 

lCtG02 5T 

(l“-&t)s-cDT 

s” - (a0) *s 
ZZ 

raPr GO* 
-bYoY,exp(-TJT)$. (14) 

In equation (14) the primes denote differentiation with 
respect to ‘1, and ij is a modified Damkiihler number 
that can be expressed as 

B= 
B,p PI 

M,v,(G/4s) ’ (15) 

I f  the fluctuations involving the temperature are small 
such that (s/T) CC (T/T,), then, in any event, the last 
term in the second of equations (14) may be neglected. 
Near the fuel surface in buoyant fires, the region to 
which this analysis is expected to apply, the exper- 
imental results of Fischer [I81 indicate that this is 
indeed the case so that we neglect the contribution 
due to disturbances in the reaction rate. Again, since 
the present analysis is an idealization, this comparison 
is introduced in a ‘rough’ sense. The ambient is undis- 
turbed, so that the boundary conditions related to 
equations (14) in the ambient are 

@(co) = CD’(m) = s(m) = 0, 

such that 

= @;(a) = s,(a) = s,(m) = 0. (16) 

The other boundary conditions are not immediately 
obvious and must be inferred intuitively. We assume 
that disturbances at the surface are minimal, which is 
reasonable in light of the large thermal capacity of the 
surface. Therefore 

s(O) z 0, or s,(O) Z ~~(0) Z 0. (17) 

Other experimental measurements on buoyant natu- 
ral gas fires [I91 imply that the quantities (r.m.s. u’)/ 
II z 0.6 and (r.m.s. u’)/D z 0.7 very near the surface, 
the terms (r.m.s. u’) and (r.m.s. u’) having values 
equal to (u”)“’ and ‘(u”)“‘, respectively. In light 
of these observations we assume that for our idealized 
case 

I@,(O)1 o 0.7 I@:(O)1 z 0.6. (18) 

In the context of equations (IS) we note that 
pressure waves have been observed on the surface of 
gaseous buoyant fires [20]. The boundary conditions 
represented in equation (18) are readily substituted, 
without loss of generality in the analysis; only the 
resulting solutions will be different. We note that the 

terms .f’, f  “‘, T and T’ appearing in equations (14) 
are obtained from the solution of equations (IO) fol- 
lowing the earlier analyses referenced above. We note 
that applying the observed boundary conditions does 
not analyze the inherent stability of the flame, but 
determines conditions corresponding to the observed 
instability (cf. [I l-131). 

Heiber and Gebhart [2l] elucidate a method that 
has been extensively used for the solution of equations 
(14) considering nonreacting flows [I 1-l 31. For react- 
ing flows the system of equations described by equa- 
tions (I 0) and (I 4) is highly nonlinear, so their method 
is applied after some modification. The above men- 
tioned system of equations possesses three linearly 
independent integrals which are negligible at infinity 
[2l]. Thus, as u + co, a choice of these integrals is 
made such that 

D2 = exp[J(-(aO)‘-rwG0’q)] 

CD, = exp[,/-(cd)‘-wGPrO*q)]. (19) 

In this analysis we assume that the Prandtl number 
equals unity and note that as r~ -+ co the quantity 0 
approaches a value equal to one. Upon application of 
these approximations the composite solution may be 
written in the form 

a=@,+Ra* (20) 

which must satisfy the boundary conditions at the 
surface, i.e. the first of equations (18), at q = 0 so that 
the constant 2 is easily obtained. Further, equation 
(20) may be simplified in terms of its real and imagin- 
ary parts and expressed as 

@ = exp(--~)(l+Acos(K~))+Jexp(--q)sin(~q), 

K = ; (W/E). (21) 

The second derivative of equation (21), with the con- 
straint that @“’ = 0 (since j“” = 0 for the base solu- 
tion), is employed to start the solution at 9 --+ co in 
order to shoot for the boundary conditions expressed 
in equations (17) and (18). This imposes two 
additional conditions on equations (14) from which 
the disturbance frequency w and amplitude CI are 
ascertained. 

RESULTS AND DISCUSSION 

While the boundary conditions imposed through 
the application of equations (17) and (I 8) are specific 
to values obtained from the literature, we stress that 
this analysis is generic and independent of exper- 
imental measurements. For instance, in light of uncer- 
tainty in the exact boundary conditions that are used, 
one can change the nature of equations (17) and (18) 
and still apply the above analysis both in form and 
content; the results, though, are expected to be 
effected by these changes. For the sake of simplicity 



2662 I. K. PlJRl 

0 50 loo I.50 

G 

FIG. 2. The stability limits describing the variation of the 
dimensionless frequency with G (solid curve), with lines of 
constant frequency (dashed curves) represented in the 

domain. 

we consider semi-infinite horizontal surfaces burning 
a fuel that has the same thermodynamic, chemical 
and transport properties as n-heptane in an ambient 
consisting of atmospheric air. The base solution 
for such fires has been previously determined 1141 
and is the same as that used in this study. The salient 
physical and chemical properties of n-heptane are 
briefly recalled: the latent heat of vaporization L 
is 7.50 kcal mol- ’ ; the heat release Q is taken to be 
1068 kcal mol- ’ ; the ratio of specific heat to heat 
release c,,/Q is taken as 4.7 x IO- ’ ; the peak tempera- 
ture is 2396 K; the ambient kinematic viscosity is 
taken to be 0.157 cm’ s- ’ ; and the temperature of the 
surface, taken as the boiling point temperature of the 
liquid, is 371 K. 

The disturbance amplitude o! is held fixed and that 
of w varied in order to match the boundary conditions 
at q = 0. As this procedure is repeated for several 
values of G, an outer stability region in terms of w and 
G is described which signifies a unique characteristic 
dimensionless frequency for a particular value of G. 
The term G is in turn related to the boundary layer 
length scale (cf. equations (I 3)). The value of a was 
held fixed for this study, and kept equal to 0.5, which 
implies, for example, an amplitude of roughly 5 cm at 
a distance of 10 cm inwards from the surface edge. A 
similar inference has been previously made for the 
stability of an infinite candle [9]. Previous studies per- 
taining to nonreacting flows [ 1 I, 131 demonstrate this 
value to be plausible since it lies within the stable 
region. In any event, the calculated results are almost 
unchanged if the value ascribed to a is doubled. 

The numerical solution relating o to G is reported 
in Fig. 2 in which the solid curve represents the lower 
stability limits. The interpretation of the results is that 
for a particular value of G there is a distinct value of 
w at which the buoyant fire first becomes unstable. 
The upper stability limits [ 1 l-l 31 were not calculated 
since it is the monoperiodicity of buoyant fires that is 

our concern. With a little algebraic manipulation, 
using the definitions outlined in equations (13), it can 
be shown that 

WC-"-' = 2~F/[v,(Sg/v:)"~] (22) 

which enables lines of constant frequency to be cal- 
culated ; these lines are represented by dashed curves 
in Fig. 2. Following a constant frequency line, a 
characteristic value of G is determined when the stab- 
ility limit curve is intersected. 

If  the thermal boundary layer is assumed to extend 
to an .r-wise length L which is less than the surface 
radius, the terms G and Gv, may be calculated (cf. 
equations (13)). In Fig. 3 we interpret the results pre- 
sented in Fig. 2 by relating the dimensionless dis- 
turbance frequency to the boundary layer length 
where, again, lines of constant frequency are also plot- 
ted. Thus, a characteristic monoperiodic frequency 
may be determined for any boundary layer length that 
is considered. If  a fit is made to describe w in terms 
of L, the resultant expression obtained is of the form 

w~Oo.O675L-~~. (23) 

The length L is implicitly present in the definition of w 
(cf. equations (13) and (22)), and with the appropriate 
substitutions equation (23) may be written in a form 
that relates the dimensional frequency F to the bound- 
ary layer length, i.e. 

F g 0.2045(g0.6/o;0~')L-o.R. (24) 

An appropriate value for L, that may be considered 
in equation (24), is L = C(d/2) where C is a constant 
and d the surface diameter. Substitution of this value 
into equation (24), provides a relation in terms of the 
surface diameter. In the absence of rigorous data the 
constant C must be empirically determined from 
results obtained from experimental measurements. 

In equation (24) the value of L is expressed in units 

0 ‘I 8 12 16 

L, cm 

FIG. 3. The stability limits describing the variation of the 
dimensionless frequency with the x-wise thermal boundary 
layer length, corresponding to Fig. 2. calculated from equa- 
tion (13) (solid curve) with lines of constant frequency 

(dashed curves) represented in the domain. 
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of cm. Though the above relation has been derived 
for semi-infinite surfaces burning liquid n-heptane as 
fuel, it has been experimentally observed that the dis- 
turbance frequency correlates well with surface diam- 
eter regardless of the nature of the fuel [5], though, as 
stated earlier, buoyant fires are described more fully 
by a set of elliptic equations. The predictions also 
indicate that the pulsation frequency depends on the 
gravitational constant as (go.“), thereby implying that 
reduced gravity flames exhibit a much smaller pul- 
sation frequency. 

In closing, it is appropriate to reiterate the objec- 
tives of this work, so that any limitations are viewed 
in perspective. It is not contended herein that the 
complere mechanism of buoyant fire fluctuation is 
fully addressed by the present analysis. Rather, it is 
proposed that at length scales that are characteristic 
of this idealized problem, it is appropriate to consider 
burning over horizontal surfaces to occur in a thermal 
boundary layer. 

CONCLUSIONS 

An analytical study of the pulsation frequency of 
a flame established above a semi-infinite horizontal 
surface is conducted in terms of a base flow and a 
periodically occurring disturbance in a thermal 
boundary layer. A similarity solution obtained for the 
base flow forms the basis of analyzing the disturbance. 
The same similarity variable is used to derive the rel- 
evant equations governing the fluctuating flow. Some 
of the boundary conditions applicable to the disturbed 
flow are inferred from previously conducted exper- 
imental measurements pertaining to buoyant fires. A 
parabolic solution is considered appropriate due to 
the physics of the instability which is 0bserve.d to grow 
in amplitude downstream from the surface but with 
an unchanging characteristic frequency. While a solu- 
tion to the entire flowfield is not obtained, a per- 
turbation analysis of the thermal boundary layer 
shows that the buoyant flame pulsation is related to 
a characteristic length scale, taken to be the surface 
diameter. 
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